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Abstract

Carpark surveillance data
e vehicle color
e trajectories
e speed

—}ﬁ —p | data analytics

Challenges

e outdoor scenarious - various illumination & weather conditions
e retrieval time may increase as the data size grows
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Key Concepts

e We adopted the concept of "atoms" - to quantize a video input into
individual 3D spatial-temporal cubes which consist of the X-axis, Y-axis
and T-axis.

e This enabled us to easily tag each vehicle with a unique sequence of
atoms (x-position, y-position, and t-position).

e These sequence of atoms can then be used in the retrieval process
based on the user-described motion of a particular vehicle.
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Object Specific Semantic Extraction
i. Color Information
ii. Motion Information
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i. Chromatic Vehicle (Red)

ii. Achromatic Vehicle (Gray/White)

Fig: (From left) Original image; Grayscale image; Absolute difference;
Binary threshold absolute difference; Threshold difference in grayscale

Color Gray Black White Red Blue Orange Yellow Green Pink Purple Brown
# 365 182 150 60 19 15 13 10 9 7 7

% 43.6 21.7 17.9 7.2 2.3 1.8 1.6 1.2 1.1 0.8 0.8

Table: Ground truth distribution vehicle colors ordered by occurrence
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Fig: (a) Black & White Filter Response, (b) 8+1 Directional Bins,
(c) 11 Color Categories (Clockwise - Black, Gray, White, Red, Orange,
Yellow, Purple, Pink, Brown, Blue, Green)

Experiment & Results
The method was tested on 2 days of continuous outdoor carpark data
(20 hours, 10 each day). The performance is recorded as below.
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Fig: (left to right) Motion Test Case 2 (TQ2)
from Motion Test Case 2 (TQ2 - turning into a junction)
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