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Abstract—Car park video surveillance systems present a
huge volume of data that can be beneficial for video analytics
and data analysis. We present a vehicle state tracking method
for long term video surveillance with the goal of obtaining
trajectories and vehicle states of various car park users.
However, this is a challenging task in outdoor scenarios due
to non-optimal camera viewing angle compounded by ever-
changing illumination & weather conditions. To address these
challenges, we propose a parking state machine that tracks the
vehicle state in a large outdoor car park area. The proposed
method was tested on 10 hours of continuous video data with
various illumination and environmental conditions. Owing
to the imbalanced distribution of parking states, we report
the precision, recall and F1 scores to determine the overall
performance of the system. Our approach proves to be fairly
accurate, fast and robust against severe scene variations.

Keywords—Video surveillance; Car park analytics; Long
term; Vehicle state tracking

I. INTRODUCTION

Today, large amount of car park video surveillance
data recording are available due to the low implementation
cost of video surveillance. This huge volume of data can
be very useful for video analytics purposes. For example,
trajectories of the cars can be extracted to analyze parking
patterns at different time periods. Besides, other insightful
analysis such as the popularity of parking lots and driver
behavior can also be determined.

Despite the potential usefulness of long term surveil-
lance video data of car parks, existing research largely
focus on determining parking spots availability, without
analyzing the motion information of the vehicles [1], [2],
[3]. Notably, some car park analytics systems use alternative
data sources such as wireless sensors which incurs high
setup and maintenance cost [4].

With the aim to extract important trajectories from the
car park, we propose a long-term state tracking method
that detects and tracks vehicle movement in video data
recorded from a large outdoor parking area. This method
first performs background subtraction to extract foreground
blobs. Foreground blobs are then modeled and filtered to
remove unwanted blobs. Tracking is done on per frame
basis to prevent loss of important information. Inspired by
[5], our approach adopts the use of a state machine to
determine the state of each vehicle in the car park from a
set of potential states (e.g. ‘Enter’, ‘Parked’, ‘Exit’). Finally,
we evaluate the efficacy of the proposed method on a full
day 10-hour long video.

The remaining sections of this paper are organized
as follows. Section II reviews related works on analytics
and trajectory extraction from car parks. Then, Section III
describes the framework of the proposed method. Experi-
mental results and conclusion are presented in Section IV
and Section V respectively.

II. RELATED WORKS

Two popular methods that are used for object tracking
are optical flow and background subtraction [6]. Optical
flow uses motion information and clustering processing to
detect objects in the video frames. However, optical flow
has poor noise removal performance and is computationally
expensive, making it unsuitable for systems that requires
real-time performance. On the other hand, background
subtraction uses the current frame to compare against a
reference background model to track potential moving
objects. Sobral and Vacavant [7] compared the performance
of 29 different types of background subtraction algorithms.

Several researchers adopted optical flow method for
object tracking. Aslani and Mahdavi-Nasab [8] developed
a system that used optical flow to detect and track moving
objects for traffic surveillance. In their system, optical flow
was used to calculate the motion vectors and a threshold
for the vector magnitudes is then applied to segment
objects from the background. Dubskd et al developed a
fully automated traffic surveillance system with optical flow
tracking [9]. Their approach used optical flow to detect
moving objects and local feature points to analyze the
trajectories based on cascaded Hough transform and parallel
coordinates.

Comparatively, background subtraction is more widely
used for tracking and detecting objects. Jodoin et al. [5]
proposed a tracking method that is designed to specifically
track road users in urban environments. to extract fore-
ground blobs, the authors used a modified ViBe background
subtraction method [10] that can better handle intermittent
object motions that frequently occurs in urban scenes.
Zhang et al. [11] proposed an algorithm to detect and track
objects with adaptive background subtraction. Morpholog-
ical operations is applied to remove unwanted objects.

Even though video analytics is an active and popular
topic in the computer vision research community, most
recent works focus on performing analytics on highway
and urban traffic scenarios instead of car parks [5], [12],
[13]. While the earlier processing steps for both car park



and traffic videos are very similar, more events are required
to be detected in the car park, e.g. parking or leaving
the parking lot. Therefore, it is very difficult to directly
adapt traffic-based systems to car park surveillance systems.
Chen et al. [14] proposed a vehicle surveillance system
for parking lot management in outdoor environments with
multiple cameras. Three different features; color, position
and motion were used to track vehicles across different
cameras. Color change model is used to determine whether
the parking lots are vacant or occupied. Jermsurawong
et al. [1] proposed a solution that uses trained neural
networks to determine occupancy states based on visual
features extracted from parking lots. Different types of
features — light-related features, pixel-related features and
edge features, are extracted to improve the accuracy of
the system under various lighting conditions. Yusnita et
al. [2] presented an intelligent system for parking space
detection using simple image processing techniques. The
system detects parking spaces by tracking a brown circle
that was manually drawn at the center of each parking lot.
Parking lots will be considered occupied when the brown
circle is not tracked.

More recently, Marmol and Sevillano [3] proposed
QuickSpot, a video analytics solution for on-street vacant
parking spot detection system. It uses a 3-way Gaussian
mixture model (GMM) background subtraction method,
with background model created upon 50 frames to extract
foreground blobs. Kalman filtering is used to predict the
location of each tracked object and the Hungarian algorithm
is used to find the nearest match. A k-Nearest Neighbor
(kNN) classifier is used to classify a parking spot as either
‘asphalt’, ‘car’ or ‘pedestrians.’” Since the appearance of
vehicles vary depending on the perspective viewing angle,
two types of databases were used in their training process:
video footages from the parking site and external databases.
Although the reported accuracy of the system was near
perfect, the average length of most videos is less than 2
minutes, with only one or two parking events at most.

III. FRAMEWORK

The proposed framework follows a typical process that
includes foreground blob extraction, blob filtering, tracking,
and finally vehicle state detection. The overview of our
framework is presented in Figure 1 and Algorithm 1.

A. Background subtraction

For computational efficiency, our framework starts by
performing background subtraction instead of optical flow.
Firstly, foreground blob extraction (Algorithm 1, Line 3) is
performed by using a combination of adaptive background
learning (ABL) and frame differencing (FD) methods. The
ABL method learns the background by averaging through
N number of frames (in our experiments, to construct the
background mask in order to prevent tracked objects turning
into background immediately; in our experiments, N was
set to 20. However, due to the leftover ‘trail’ produced by
the ABL background subtraction method, the FD method is
applied additionally to remove these effects. Note that the
FD method cannot be used on its own due to its high sensi-
tivity to noise. Hence, an ‘AND’ operation is performed on
both background subtraction methods to produce the final
foreground blobs. Morphological operations such as dilation
and erosion are then performed several times to decrease
possible noise produced by the background subtraction

Algorithm 1 Vehicle State Detection

for Each video do

1:

2:  for Each frame do

3: Extract foreground blobs

4 Perform morphological operations on foreground

blobs

5 Model and filter foreground blobs

6: for Each previous frame’s blobs do
7: if Match blobs(Blob) == true then
8: Update blobs

9: else
10: Add new tracking blob
11: end if
12: end for
13: Check state(Blob)
14: Store data to the database
15: Return final tracking blobs
16:  end for

17: end for

TABLE I: Blob Parameters.

Parameters values(x)
Bounding Rectangle’s Area X > 650
Bounding Rectangle’s Aspect Ratio 02<x<04
Bounding Rectangle’s Width x > 25
Bounding Rectangle’s Height x>25
Bounding Rectangle’s Diagonal Size 40 < x < 200

methods. Finally, connected components are computed to
generate the final foreground blobs.

B. Foreground blob modeling and filtering

Next, these blobs are modeled and filtered based on their
size, position and aspect ratio (Algorithm 1, Line 5). Table
I shows all blob parameters used in the algorithm, which
were determined empirically to suit the scene geometry.
These blob parameters are tunable to other video data
with different viewing angles. Blobs that do not satisfy the
desired range for these parameters are filtered out to remove
unwanted objects such as pedestrians and motorists.

Due to the perspective viewing angle of the video,
pedestrians may appear bigger when they are nearer to the
camera leading to potential falsely detected blobs. Since
our system is designed for vehicle detection, it is important
to filter out pedestrian-like blobs. Histograms of Oriented
Gradients (HOG) [15] descriptors is applied on the image
crop of each blob to detect pedestrians. If a pedestrian blob
is detected, it will be removed immediately from further
consideration. The centroid and average color of each blob
is then computed and stored for blob matching and tracking
in the next step.

C. Cascaded Blob Matching

Blob matching and tracking is one of the most important
component of the algorithm (Algorithm 1, Line 7). In this
step, the algorithm decides if a newly found blob matches
one that was detected earlier or a new track is to be started.
We employ a cascading blob matching approach to match
and track the blobs in each frame.

Given the position P of a current blob b at frame ¢, the
newly predicted blob position, P’ can be determined by:

g,b('xvy) :Pt,b(l',y)—f-At’b(l‘,y) (1)
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Fig. 1: Framework Diagram

where the change along the z and y dimensions can be
calculated based on blob positions from M previous frames:

M—-1

At,b(zy y) _ Z mx (Pt—mgl - Pt—M) (2)

m=1

where S = Z%:_ll m is the normalisation factor deter-
mined as the sum of sequence in [1, M — 1]. The value
of M increases as a new blob is continuously tracked. We
set M = 10 as the maximum value in our experiments
to limit computational load as using more frames does not

significantly change the final predicted position.

After the predicted position P’ for the existing blob is
computed for each active blob in the current frame, the
distance, D between the position of the active blob, P and
the predicted blob position, P’ is computed as,

D= \/(P;— P+ (P, - P,)? 3)

A matching blob is found if distance D is less than the
predefined threshold, 7'. In our experiments, 71" is set to
half the current blob’s diagonal length.

In the case where the existing blob fails to match any
other blob, it cascades to a secondary method. Matching
failure can happen when the background subtraction method
fails to extract the foreground blobs correctly due to image
noise or illumination changes. This second method utilizes
the average color to perform the matching. The current
blob that has the closest average color to the existing blob
will be matched. Average color matching is effective as a
supplementary method but not as the primary one, as it
is highly dependent on the lighting condition and vehicle
orientation between frames.

The final third method, which is based on simple
distance matching between blob centroids (similar to the
Hungarian algorithm), is considered if the blob does not
get matched by the earlier methods. Any active blobs that
do not match any blobs in the previous frame is considered
as a potential new track and is labeled as an unassociated
blob (Algorithm 1, Line 10).

D. Parking State Detection

A parking state machine (Figure 2) that consists of 9
states is constructed and used in the system to represent
different activities for each tracked blob in the car park.Each
tracked blob can only be represented by one state at any
given time. The changing of states for each tracked blob,
also known as transitions, will occur when certain condi-
tions are met (Algorithm 1, Line 13) as specified in Table
II. Information of the current tracked blob is updated when
any state change is detected. To improve the performance of
the algorithm, blobs that are no longer needed to be tracked
by the system are removed.

Transitions al, a2, a4, a6 occur when tracks intersect
with certain designated areas in the car park for at least N
number of frames. The duration of intersection of tracks,
Ty can be formulated as,

i+N—1
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i
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where P is the track, N is number of frames, and A is
designated car park area or parking zones. The notation [.]
is the Iverson bracket for Kronecker delta. State change
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Fig. 2: State Machine Diagram



TABLE II: State Machine Table

State State Description Transition = State N A
Hypothesis The starting state of the state machine that used to represent any potential new track. al = Normal 5 CPA
Tracks in the hypothesis state will be visualized with a yellow bounding box. al5 = Delete 10 -
a2 = Parking zone 50 PZ
A state used to represent tracks that entered the car park area. An unique tracking 94 => Non Track Park- 10 NTZ
Normal identification number will be assigned to these tracks. A red bounding box is used to ing Zone (NTPZ)
represent tracks in normal state. ab = Danger Zone 70 Dz
a8 = Merge - -
al0 = Mismatch 40 -
al2 = Exit 5 CPA
Parking zone A state used to represent vehicles parked in the proper parking lot. a3 = Normal 5 PZ
Non Track Parking Due to viewing perspective angle of the stationary camera, some of the proper parking a5 = Normal 10 NTZ
Zone lot are blocked by different obstacles and which makes it difficult to be tracked by the
algorithm. Thus, this state is created to represent the vehicles parked in these parking
lots.
Danger Zone A state used to represent vehicles parked at the illegal parking spot. a7 = Normal 5 DZ
Merge A state used to represent the situation where two vehicles get too close to each other, a9 = Normal - -
which in turn, causes the foreground blobs to extract only one blob instead of two blobs.
Mismatch A state used to represent tracks that does not get matched. Z} é z g:lr;l:l _1 00 :
Exit A state used to represent tracks that exited the car park area. al4 = Delete 10 -
Delete A state used to represent unwanted tracks. - - -

Note: Car Park Area (C'PA) (Figure 3), Parking Zone (PZ) (Figure 4, Green bounding box), Non Track Parking Zone (NT'Z) (Figure 4, Yellow
bounding box), Danger Parking Zone (D Z) (Figure 4, Red bounding box), Number of frames (INV), Area of intersection (A)

Fig. 4: Designated parking zones

will occur when the duration T;,, exceeds the specified N
number of frames in the area.

Transitions a3, ab, a7, a12 happen when tracks that are
already in certain designated areas — car park area, various
parking spots, start to move out from the area. The duration
of track intersection, T,,,; for these transitions is defined as,

i+N—1

Touwr= Y [Pi¢ Al )
Likewise, For these transitions, state change will occur
when the duration 7,,; exceeds the specified N number of

frames outside the area. Notably, different N and A values
as depicted in Table II are set for different transitions.

We make a special mention here for cases where fore-
ground blob extraction is unstable. Tracks in the ‘Normal’

state can be transit to ‘Mismatch’ state when the track
does not get matched for more than 40 frames (transition
al0). These tracks will remain in this state until one of the
following conditions are met:

1)  The occurrence of a track falling into ‘Hypothesis’
state while in the car park area. This may either
caused by random noise mistaken as a tracked
blob or an abrupt lost-and-recovery of track in
the area. In this case, the average color matching
method will intervene to perform matching. If
matching is successful, it will be changed back
to ‘normal state’ (Transition all).

2)  If no match is found after more than 100 frames,
these tracks will be deleted (Transition al3).

Furthermore, two vehicles might get too close to each
other, which in turn, causes the foreground blobs to extract
only one large blob instead of two separate blobs. The
‘Merge’ state was designed to handle this situation. Blobs
in ‘Normal’ state will transit to ’Merge’ state when one
current blob is matched to two existing blobs (Transition
a8). This indicates a case of merging (Figures 5a, 5b). Since
the average colors of all tracked blobs are stored, we use the
average color matching method to perform track splitting by
re-matching the new separated blobs with the last average
color saved previously. More importantly, the split tracks
should retain their original track numbers (Figure 5c). Upon
splitting, the ‘Merge’ state returns back to ‘Normal’ state.

IV. EXPERIMENTS
A. Dataset

This section describes the video data used in the devel-
opment and evaluation of our system. Our video database
consist of videos recorded from a university’s car park
area over a duration of several months. A single stationary
camera was set up in one of the laboratories to record
the video daily throughout the week (from 8:30AM to
6:30PM), excluding Saturdays & Sundays. Figure 6 shows
the wide range of challenges found in the recorded video
data: severe morning and afternoon shadows, rainy weather,
and occasional reflection from within the laboratory.
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The camera was configured to record 6-minute videos
for ease of access and processing. Hence, a total of 100
videos were captured for a single day. These videos were
recorded in a compressed H.264 MPEG-4 format with a
resolution of 640 x 480 pixels and frame rate of 10 fps.
Due to the scale of experiment, we choose only a single
day’s video (10 hours, 18th of October 2016) for the work
reported in this paper.

B. Experiment Methodology

To validate our method for vehicle state detection,
the ground truth states were manually labeled by a few
annotators and cross-checked among them for verification.
This allows us compare how well the proposed automated
method fare against human observations. We specified six
activities corresponding to different state changes that we
intend to detect: Enter, Exit, Enter (NTZ), Exit (NTZ),
Park, and Leave. Table III describes the six activities and
their actual number of occurrences, as determined from the
annotated ground truth. Our system was implemented with

TABLE III: Distribution of Activities and their Correspond-
ing State Transitions

Activity State Transition  # of occurrence %

Enter al 405 40.42
Exit al2 428 42.71
Enter (NT Z) ad 30 2.99
Exit (NT'Z) ab 43 4.29
Park a2 44 4.39
Leave a3 52 5.19

C++ on a desktop machine with an Intel i7 processor, 16GB
RAM and a NVIDIA GeForce GTX 1060 GPU. The entire
process pipeline (including additional overhead for writing
to the database), from start to end, averaged at around 5 fps,
a notable real-time achievement.

Evaluation metrics: We used 3 evaluation metrics - Preci-
sion, Recall as well as the F1-score to determine the overall
performance of the system.

tp
tp+ fn

tp

———— ; Recall =
tp+ fp

Precision =

Fl-score = 2 - Precision - Recall

6
Precision + Recall ©

where tp is the true positives, fp is the false positives and
fn is the false negatives.

The Accuracy metric was not used for measuring the
overall performance of the detection task as the data is
severely imbalanced and this metric may be bias towards the
activities with larger number of occurrences (see Table III),
i.e. the ‘Enter’ and ‘Exit’ activities are around 9 times more
than the rest. Instead, the Fl-score was used as it is the
harmonic mean of the Precision and Recall scores.

C. Experiment Results

The detected vehicle states are validated against the
annotated ground truth labels to obtain our results. Since
it is difficult to determine the exact moment a particular
vehicle moves to a new state (i.e. enters parking area, parks
at a specific spot), we use a time window 7’ to indicate a £7
seconds range whereby a predicted state can be correctly
matched to the ground truth label. Correct matches will be
regarded as true positives, ¢p. False positives, fp and false
negatives, fn are calculated as follows:

fp = Total # of Extracted Result - tp
fn = Total # of Ground Truth - ¢p

Duplicated matched states— states that are predicted more
than once within the range of +7 seconds, are considered
as false positives as well.

Table IV shows the results with different time window
T, ranging from 1 second to 5 seconds. Parameter T' can
be seen as a tolerance measure, which allows consideration
for a certain margin of error. We report results up to a
maximum of 7' = 5 to consider for the ambiguity in the
‘Park’ and ‘Leave’ activities where vehicles sometimes take
longer than usual to park or leave a parking lot. With T = 5,
our system achieved the best F1-score of 75.40%.

TABLE 1IV: Vehicle State Detection Performance with
Varying Time Window T’

T (seconds) Precision (%) Recall (%) Fl-score (%)
1 66.98 56.46 61.27
2 78.18 65.90 71.52
3 81.01 68.29 74.11
4 81.72 68.89 74.75
5 82.43 69.48 75.40

D. Discussion

Results in Table IV show that fixing 7" between 3 to 5
seconds produces a consistent performance, with a deviation
of about 1 — 2% only, compared to using a smaller 7.

For further analysis, we split our results into individual
activities to understand better where the errors are coming
from. Overall, the results show that the performance for the
‘Enter’ and ‘Exit’ states are relatively higher than the over-
all performance while the performance for ‘Park’, ‘Leave’,
‘Enter (NTZ) and ‘Exit (NTZ) states are noticeably
lower than the overall performance. This may be attributed
to the fact that when a vehicle enters one of these states,
they would slow down or momentarily in standstill, which
in turn causes the background subtraction to lose track of
the foreground blob.

Several interesting observations arose from the results:

e  Although the ‘Exit’ states achieved good precision
score, its recall rate of 66.5% is a surprising



(b) Severe shadow casted on the
car park (04:06PM)

(a) Severe shadow casted on the
car park (08:48AM)

(d) Reflection from within the
laboratory

(c) Rainy day - reflective sur-
face

Fig. 6: Challenges encountered in the recorded video data
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one. This indicates a substantial number of false
negatives. Further analysis of the data shows that
vehicles leaving the top left exit point are the main
contributors to this error.

e The poor precision in detecting vehicles that are
in the ‘Park’ state is likely caused by the fact that
most drivers would take some time to adjust their
parking position, leading to multiple detections of
a ‘Park’ state, i.e. increase in false positives.

e In addition, it is possible that the small sample sizes
for the ‘Enter (NT'Z)’, ‘Exit (NT'Z)’, ‘Park’, and
‘Leave’ states (16.86% of total) provide a poor rep-
resentation of the proposed method’s performance.
Their transitions could be better modeled with more
samples at hand.

V. CONCLUSION AND FUTURE WORK

This paper proposes a vehicle state tracking method that
detects and tracks vehicle movement in a large outdoor
car park area from long-term video data. The framework
presented performs background subtraction and blob filter-
ing before a cascaded blob matching approach is applied
to track the blobs. Thereafter, a parking state machine
is designed to determine the state of vehicles in the car
park. Under varying illumination and scene conditions, the
proposed method yielded a Fl-score of around 75% for
10 hours of continuous video data, achieving a real-time
processing speed of 5 fps.

In future, we aim to improve the performance of our
proposed method, especially for states with lower-than-
overall performance. We also intend to test the proposed
solution with data spanning over several weeks and months.
This will enable complex tasks such as retrieval of trajec-
tories, and extraction of long-term car park trends.
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