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Abstract. Car park video surveillance data provides plenty of semantic
rich data such as vehicle color, trajectory, speed, and type which can
be tapped into and extracted for video and data analytics. We present
methods for extracting and retrieving color and motion semantics from
long term carpark video surveillance. This is a challenging task in out-
door scenarios due to ever-changing illumination and weather conditions,
while retrieval time also increases as data size grows. To address these
challenges, we subdivided the search space into smaller chunks by in-
troducing spatio-temporal cubes or atoms, which can store and retrieve
these semantics at ease. The proposed method was tested on 2 days
of continuous data from an outdoor carpark under various lighting and
weather conditions. We report the precision, recall and F; scores to de-
termine the overall performance of the system.

Keywords: Vehicle Semantic Extraction, Retrieval Systems, Carpark
Surveillance

1 Introduction

The use of video-based traffic surveillance is becoming increasingly popular due
to the low implementation cost. However, majority of these data are left un-
processed and kept in storage devices. Rich semantic data such as vehicle color,
trajectory and type can be exploited for video and data analytics to provide
deeper insights for surveillance and retrieval purposes.

Traditionally, to perform retrieval on surveillance videos, users need to pro-
vide description of the vehicle such as the time, place of the incident, vehicle
registration plate, and color of the vehicle. Next, users would filter through all
the retrieved results to manually identify the target event. This entire process is
undoubtedly time consuming and labor intensive.

To overcome the inefficiency of such laborious methods, we propose a long-
term surveillance analytics system that extracts and stores the semantics data
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into a database and allow video clips of specific events to be retrieved using
user-described queries.

First, our method performs background subtraction to extract foreground
blobs that represents vehicles. Next, a filtering process is applied to remove any
unwanted blobs such as pedestrians. They are then tracked frame by frame to
generate their individual trajectories and to extract vehicle-specific semantics.
Lastly, these semantics are segmented into spatio-temporal cubes (atoms) and
stored in the database. We evaluated the reliability and performance of the
proposed method over a span of 20 hours.

2 Related Works

While Intelligent Transportation System (ITS) is a popular research topic, there
has been little research done for carpark scenes. When viewed regardless of the
intended scene, vehicle semantics extraction and trajectory retrieval for surveil-
lance video is a wide research field.

For vehicle color semantics, there are many different school of thoughts that
arise from it. Authors in [2] and [5] approach this challenge by obtaining the
histogram in HSV/HSL color space while other works [4,6,9] addressed it by
designing deep learning methods. In an interesting work [8], color spaces were
also used to detect moving shadows from urban surveillance video.

In the area of vehicle motion extraction and trajectory grouping, the authors
in [11] and [2] quantized the moving direction of the objects into 4 and 9 di-
rectional bins respectively. In [3], a novel method of indexing trajectories into
spatio-temporal cubes is introduced. A recent work by Castandn et al. [2] used
other vehicle semantics such as size and persistence to query for anomalous and
typical events.

3 Framework

The framework of our proposed method adheres to the typical top-down ap-
proach for automated video surveillance in carparks [7] which includes back-
ground subtraction, blob filtering, vehicle detection vehicle tracking. The se-
mantic information from these vehicle blobs are extracted, segmented into atom-
based cubes and stored in the database. This information can then be queried
through a search interface. The overview of our framework is shown in Figure 1.

3.1 Background Subtraction, Vehicle Detection and Tracking

We describe a number of preparatory steps that were taken prior to the extrac-
tion of semantics. Firstly, background subtraction with a combination of adap-
tive learning and frame differencing [7] is performed to extract foreground blobs
from each video frame. This strategy is computationally cheaper than optical
flow, hence it improves on the overall efficiency of segmenting moving objects.
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Fig. 1: Framework diagram
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Since the focus is on carpark surveillance where large portions of the video
footages may not contain any substantial movement, a frame skipping method
was deployed to speed up the overall processing. The blobs then go through a
series of morphological operations such as dilation and erosion to filter out noise
and to fill up gaps in the blobs to generate the final foreground blobs.

Next, the blobs are filtered according to their sizes, positions and aspect
ratios, where each of these parameters were determined empirically to suit the
scene geometry. After that, the YOLO real-time object detector [10] is applied
to differentiate between vehicles or non-vehicle blobs. This two-step approach is
designed to filter out objects other than vehicles that are not of interest such as
pedestrians and motorcycles. Finally, each blob is matched back to the trajec-
tories using a tracking state machine proposed in [7].

3.2 Object Specific Semantic Extraction

As object specific semantics from the scene provides deeper insights for surveil-
lance purposes, this work currently focuses on two types of object specific se-
mantics, namely the color and motion information.

I. Color information plays a significant role in the retrieval process as it is
often one of the most common information given when a user tries to describe
an object from an event in a scene. Extracting color information accurately
is particularly challenging for outdoor scenes as the color information varies
throughout the day due to ambient illumination and weather changes. Algorithm
1 summarizes our strategy for extracting color information.

When a vehicle is detected in the scene, a bounding box of the foreground
blob is usually used to mark the location of the vehicle. However, due to the
background subtraction method used, the final foreground blob appears slightly
larger than the actual footprint of the vehicle. In order to obtain a closer esti-
mation of the vehicle’s dominant color, the bounding box is cropped by 30% to
reduce some background information such as the road or vehicles around it.
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(b) Chromatic vehicle (Red)

Fig.2: (From left) Original image; Grayscale image; Absolute difference; Binary
threshold absolute difference; Threshold difference in grayscale

Subsequently, our strategy determines the dominant color of each vehicle blob
by first undertaking a task to determine if the vehicle’s dominant color belongs
to the achromatic scale (black, gray and white color) or chromatic scale (other
hues). We determine the absolute difference between the cropped image and its
grayscale version, and then threshold each channel in RGB at an empirically-
found intensity value of 35. The hint of significant values from this step indicates
a substantial presence of chromatic hue. Then, we convert the thresholded image
to a grayscale image, and determine the ratio of non-zero pixel values over total
pixels. This process allows us to deduce the presence of strong chromatic hues
and estimate if the vehicle belongs to the achromatic or chromatic subsets. A
threshold pivot, Tpio¢ is empirically set at the 0.18 where if the ratio of non-zero
pixel values is more than T};.0t, we can assume that the particular vehicle blob
contains a strong chromatic hue, as illustrated in Figure 2.

Achromatic and chromatic color processing. Upon determining if the vehicle
belongs to the achromatic scale, we then subjected the cropped image to both
the black and white filters individually by applying binary thresholds set at
empirically determined intensity levels of 50 and 170 respectively. Next, in similar
fashion, the ratio of non-zero pixels upon filtering is used to determine if the
vehicle is assigned to black, white or gray color term. Figure 3a shows how a
white vehicle responds to a black and white filter.

As for the chromatic colors, we chose to utilize the HSV color space as it
is visually more intuitive than the RGB color space. Here, we generated a 3-
dimensional HSV histogram with 15 Hue bins, 8 Saturation bins and 8 Value
bins. Based on the generated histogram, the maximum value of each bin from
all 3 channels is assumed to correspond to the dominant color of the vehicle.
However, since the vehicle is moving in the outdoor scene, the ambient and di-
rectional lighting (from sun and other light sources) contribute to slight variation
of colors. To suit our problem, the dominant color for each frame of a tracked
vehicle is averaged out throughout its trajectory.
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Fig.3: (a) Black & white filter responses, (b) Directional bins, (¢) 11 color cat-
egories [1]

Algorithm 1 Color Term Extraction

1: for Each blob in object do
2:  Shrink bounding box (crop image)

3 Create a copy of the cropped image in grayscale

4 Calculate absolute difference between cropped image & grayscale image
5 Perform threshold on absolute difference to amplify difference

6:  Convert results into grayscale & calculate no. of non-zero pixels

7 if Ratio of non-zero pixels > Tpiyot then

8 Calculate 3D HSV histogram //Chromatic Vehicle
9: Locate maximum bin location of each channel
10: Map the highest bin from each channel to Color Term
11:  else
12: Perform black & white filter //Achromatic Vehicle
13: Obtain ratio of non-zero pixels from both filters
14: Determine Color Term
15:  end if
16: end for

17: Obtain average dominant color & return Color Term

We also note that the achromatic algorithm is an essential step because the
8 Values bins are insufficient to accurately represent vehicles with borderline
dominant color as the brightness values may be widely distributed.

Color terms. Next, we addressed the problem of defining color terms by adopting
the eleven common terms in English as described by a study done in 1969 by
Berlin and Kay [1]. The color categories are white, black, red, green, yellow, blue,
brown, purple, pink, orange, and gray. This definition enables us to quantize the
range of colors to a fixed number of color categories while taking advantage of
the atom-based structure (Refer to Section 3.3).
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(a) 2D Atom Grids

Fig. 4: Atom Structure

II. Motion information also plays an important role in the retrieval pro-
cess as users would often describe the trajectory of a vehicle from a particular
incident. Instead of generating a fine representation of the vehicle’s trajectory
(conventional motion vectors), we can store a coarser representation of motion
information in the form of directional categories. We achieve this by quantiz-
ing the extracted motion information of the vehicle trajectories into 9 bins — 8
directional bins as well as one bin to denote minuscule and negligible motion,
as shown in Figure 3b. The motion vectors are extracted from the centroid of
the vehicle, with respect to its previous location one second ago; a minimum
displacement of 5 pixels determines the presence of motion.

The advantage of such a method is that we are able to fully utilize the atom-
based structure (Refer to Section 3.3) to locate motions of interest in an efficient
manner. With this approach, we do not have to consider the various combinations
of fine-grained motion trajectories which may occur in realistic outdoor scenes
such as carparks.

3.3 Semantic Segmentation and Indexing

I. Semantic Segmentation In the proposed method, we adopted the concept
of using video cubes or atomns from [2] as a high-level data structure that frames
the data into a spatio-temporal search space. An atom is defined as a group of
cells at a similar spatial location, that spans a certain fixed number of frames;
hence forming a spatio-temporal ‘cube’. Figure 4b illustrates the atom structure.
Contrary to [2] which uses these atoms in a tree-like structure that associates
each atom with its neighbors as the child nodes, we consider each atom discretely
and independently of one another.

Since our video data (see Section 4.1) has a resolution of 640 x 480 pixels
and frame rate of 10fps, we analytically set the dimensions of each atom, a to
Quwidth = 32 pixels, apeighe = 24 pixels and «; = 10 frames, which represents
the temporal duration of one second. We selected the resolution of the atom
(Qwidth, aheight) as such so that the video resolution can be uniformly divide our
video into 20 atoms across both its width and height. This approach allows us
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Fig.5: Types of Queries

to distinctly identify each atom from a video by an index (Qwidth, Qheights )
(see Figure 4). Similarly, we can store specific occurrences of each semantic
type (color, motion) with the same atom index. Though a vehicle blob may be
encapsulated by several neighboring atoms, only the atom which corresponds to
the centroid of the blob is stored. This is done with the consideration that the
precise bounding box location is not essential for retrieving video shots.

II. Semantic Indexing In order to index the extracted data, we borrowed the
idea similar to that of Locality-sensitive Hashing (LSH) used in [2] by grouping
similar semantics together for quicker retrieval. Our proposed method espouses
this by creating unique database tables for each of the 20 semantics (11 colors
and 9 motion bins) with the source video, vehicle ID along with the individual
atom indices as columns for each table. This allows us to rapidly locate specific
atoms with the queried semantic without going through the entire database, as
illustrated in Figure 5. The atom structure enables us to make queries based on
a specific region of interest, or time slice.

3.4 Semantic Retrieval

When a color query C is issued, all vehicles with matching colors are returned.
When a trajectory query Q is issued, the possible atoms that are matched will
be retrieved in temporal order. These retrieved atoms need to be merged to
build video shots that will be returned. Assume A = {an,apt1,...,an} is a
time-ordered set of retrieved atoms, we intend to piece together relevant atoms
to build video shots S,;. This is achieved by performing atom merging if the
following condition is met:

Qp41 C SZ if tan+1 - tozn < (5 * f) (1)

where f is the video frame rate.

We also introduce a Confidence Value (CV) which sets the sensitivity level of
accepting a video shot as among the retrieved results. For each shot, we accept
each retrieved shot S; if it fulfills the following condition:

length(S;)

v < length(Q)

x 100% (2)



8 Cheong et al.

a i . : / A 3
(a) Motion Test Case 1 (TQ1) (b) Motion Test Case 2 (TQ2)

Fig. 6: Search interface for the proposed framework

This provides a margin of error when performing the query which acts as a
trade-off function. A lower CV results in returning a larger set of results but at
the expense of an increase in retrieved shots, and vice versa.

Search Interface. The proposed methods were realized in a form of a search
interface, which was designed to allow users to construct a query by tracing the
trajectory and selecting colors which fit their intended vehicle description. Figure
6 shows the interface, with the green lines showing the user-selected trajectory
query. The underlying atom-based structure allows queries to be formed in a
way which emulates the semantics extraction process, eliminating the need for
query parsing.

4 Experiments

4.1 Dataset

This section describes the video data used in the development and evaluation
of the proposed method. We collected a new video dataset consisting of videos
recorded from a university’s outdoor carpark area over a duration of several
months. A single stationary camera was set up to record the video on weekdays
throughout the week from 8:30AM to 6:30PM. These videos were recorded in
a compressed H.264 MPEG-4 format with a resolution of 640 x 480 pixels and
frame rate of 10fps. Figure 7a shows a wide range of challenges found in the
recorded video data: severe morning and afternoon shadows, rainy weather, and
reflections. Due to the scale of experiment, we selected 2 days of video data
(totaling 20 hours) for the work in this paper.

4.2 Experiment Methodology

To validate our method for vehicle color and motion retrieval, the ground truth
states were manually labeled by a few annotators and cross-checked to arrive at
a consensus. This allows us to validate the efficacy of our proposed automated
method against human observations. Our system was implemented on an Intel
i7 machine with 16GB RAM, GeForce GTX 1060 GPU. In order to analyze
both color and motion semantics individually they are evaluated separately to
measure their individual performances.
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Fig.7: (a) Various carpark scene challenges throughout the day (severe shadow,
weather condition and reflections) (b) Sample screenshots of 3 retrieved shots
(left, center, right columns) for query TQ2 (turning into junction)

Table 1: Ground truth distribution vehicle colors ordered by occurrence
Color Gray Black White Red Blue Orange Yellow Green Pink Purple Brown

# 365 182 150 60 19 15 13 10 9 7 7
% 43.6 217 179 72 23 1.8 1.6 1.2 1.1 038 0.8

Color Retrieval

To measure the performance of the color retrieval module, we follow through
the pipeline by extracting unique objects from each of the 11 color tables. The
retrieved results are then compared against the ground truth. The ground truth
distribution of vehicle colors is shown in Table 1.

Motion Retrieval

We specified 2 specific motion paths or trajectory queries (TQ) that we intend
to validate: TQ1) Heading southward (see Fig. 6a) & TQ2) Turning in a junction
(see Fig. 6b). The distribution of these test cases are 252 (86.3%) and 40 (13.7
%) trajectories for TQ1 and TQ2 respectively.

To measure the performance of the motion retrieval method, we performed
evaluation on both TQ1l and TQ2 without consideration for the vehicle color.
These experiments were tested on a few CV values (70%, 80%, 90%) and different
number of atom query inputs to test the impact of trajectory details.

Evaluation metrics: We used 3 evaluation metrics - Precision, Recall as well
as the F} score to determine the overall performance of the system. Correct
matches will be regarded as true positives, tp. False positives, fp is the total
number of retrieved results minus the true positives, while false negatives, fn is
the total number of correct results minus true positives. Precision, Recall and
F score is computed as:

_P_ : Fl-score = 2 - Pre(?isjion - Recall )
tp+fn Precision + Recall

t
Precision = — 2 ; Recall =
tp

+ fp
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4.3 Experiment Results and Discussion

The performance of the proposed method is computed by comparing the anno-
tated ground truth against the retrieved results.

Color Retrieval

Table 2 reports the confusion matrix of the color retrieval task. The overall
precision stands at 54%, with a recall of 36% and F} score of 39%. The cells in
Table 2 marked in green indicate the highest count of correctly predicted colors,
while the cells marked in red indicate the highest count of incorrect predictions
for each color. Our method is able to predict correctly a majority of cases for
seven out of eleven colors.

Based on the obtained results, we learn that the T}, needs to be adjusted
as too many chromatic vehicles were classified as achromatic vehicles which in
turned affected the overall performance of the proposed method. We hypothesize
that better results can be obtained by careful adjustment of T, or attempt
to learn a suitable color model as in [6,9] for this particular scene. We observe
that vehicles with lighter and darker shades were particularly difficult as they
do not contain enough chromatic hues to arrive at a correct prediction.

While the classification of achromatic versus chromatic vehicles faced con-
siderable difficulties, the black & white filters provide a considerably good result
when determining the different categories of achromatic vehicles which may be
useful for processing in grayscale. Based on our observation, most errors usu-
ally occur when the vehicles are in locations where the intensity of shadows
overpowered the lighter-shade vehicles in terms of coverage area.

Table 2: Confusion matrix for color retrieval task

Predicted Color
Gray |Black| White| Red | Blue |Orange|Yellow|Green| Pink [Purple|Brown
68 | 0 0 0 0 0 0 0 0
Black 0 0 0 0 0 0 0 0 0
White | 26 | 4 0 0 0 0 0 0 0 0
5. Red [27 [ 25 0 [ 2 ] 0 0 0 0O [ 4 1B o©
S Blue [ 3 [ 10| 0 0 0 0 0 0 0 0
—| Orange | 8 3 0 0 0 0 0 0 1 0
2 Yellow | 3 1 2 0 0 0 0 0 0 0
<[ Green | 5 1 4 0 0 0 0 0 0 0 0
Pink [ 1T [0 [ 0o |8l © 0 0 0 0 0
Purple | 3 3 0 0 0 0 0 0 0 1 0
Brown | 3 4 0 0 0 0 0 0 0 0 0
«=[Precision[65.01]54.47] 61.86 [40.00]100.00[ 100.00 [100.00] N/A [55.56] 25.00 | N/A
Z| Recall [64.66/73.63]80.00 | 3.33 | 31.58 | 20.00 | 53.85 | 0.00 [55.56] 14.29 | 0.00
~=[F1 Score|64.84]62.62] 69.77 | 6.15 | 48.00 | 33.33 | 70.00 | N/A [55.56| 18.18 | N/A




Vehicle Semantics Extraction & Retrieval for Long-term Surveillance 11

Motion Retrieval

The retrieved trajectory shots are validated against the annotated ground
truth labels to obtain our results. As it is difficult to pinpoint the exact “scene”
where the test cases occur, we use a time window of £7 seconds to indicate a
range whereby a retrieved motion can be correctly matched to the ground truth
label. We fixed T' = 5 in our experiments, similar to that used in the tracking
evaluation of [7].

Table 3 shows the results of the motion retrieval task with varying Confidence
Values (CV) and varying number of atom inputs in the trajectory query. For
TQ1, the total number of atom inputs varied from 5 to 8 inputs while TQ2 is
represented by a shorter trajectory of 4 to 6 inputs as it concerns a junction
turning query. For TQ1 & TQ2, the overall average precision is around 89% &
50% while the recall is at 27% & 59% respectively. Based on the F; scores, the
results show that the proposed retrieval method works best when the CV is at
the lowest (70%) with an atom input length of 5. Figure 7b shows some sample
snapshots representative of the retrieved shots for TQ2.

We analyzed these results from various perspectives and we find that our
proposed method performs reasonably well at retrieving a user described trajec-
tory motion at high precision, but at the cost of a lower recall rate when CV
increases. This is likely due to its over-sensitivity towards the exact query given.
From the experiment, we also learnt that the queries should be expanded to
include neighboring atoms so as to provide a better chance at obtaining a higher
recall rate with good precision. This appeals towards the subjective nature of
trajectory-based querying where the users of such an interface would naturally
draw a general direction of the query instead of a precise path.

Table 3: Results of motion retrieval task with varying CV and number of atom
inputs

CV: 710% CV: 80% CV: 90%
Precision|Recall|[F'1 Score|Precision|Recall|F'1 Score|Precision|Recall|F1 Score

5] 93.82 |61.53| 74.32 95.34 |33.19| 49.24 95.34 |33.19| 49.24

= 5, 6/ 90.09 |36.84| 52.29 90.09 |36.84| 52.29 89.13 |16.59| 27.98
g* |7 87.27 [38.86| 53.78 88 17.81| 29.62 87.87 [11.74| 20.71
:o 8| 86.88 |21.45| 34.41 84.61 |13.36| 23.07 89.65 |10.52| 18.84
Sl 4/ 16.28 80 27.06 28.69 |73.33| 41.25 28.69 |73.33| 41.25
Z |5 65.3 71.11| 68.08 73.33 | 48.88 | 58.66 73.33 | 48.88| 58.66
> 6| 55.81 |53.33| 54.54 55.81 |53.33| 54.54 57.69 |33.33| 42.25

5 Conclusion and future work

This paper proposes a framework for extracting and retrieving color and mo-
tion semantics from an outdoor long-term car park setting. We demonstrated
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methods that were able to retrieve queries to a good measure of precision under
various lighting and weather conditions. However, there is room for improvement
in the recall ability for both the color and motion semantics.

Our future directions are aimed at fine tuning the proposed method for bet-
ter performance over a longer span of time, i.e. weeks or months. With that,
alternative methods that are more data-dependent may be plausible, such as
learning a scalable color term extraction model.
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